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Abstract

The Volterra series consists of a powerful method for the identification of non-linear

relationships. However, the identification of the series active basis sets requires intense

research in order to reduce the computational burden of such a procedure. This is a re-

sult of a large number of measurements being required in order to produce an adequate

estimate, due to overparameterization issues. In this work, we present a robust hier-

archical evolutionary technique which employs a heuristic initialization and provides

robustness against noise. The advanced solution is based on a genetic algorithm which

improves on the computational complexity of existing methods without harming the

identification accuracy. The impact of the parameters calibration is evaluated for dif-

ferent signal-to-noise levels and several nonlinear systems considered in the literature.
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1. Introduction

The identification task can be interpreted as recovering the system hidden states by

exploiting its input-output relationship data in the digital domain. Important applica-

tions of such a data-driven representation task are: (i) acoustic echo cancellation [1];

(ii) mitigation of intersymbolic interference by pre-distortion techniques [2]; (iii) spec-5
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tral regrowth analysis [3]; and (iv) active noise control [4]. Note that some of these ex-

amples require the identification of nonlinearities, which is especially important when

their impact on the single-valued output is not negligible or the input signal range is

large [5]. Nonlinearities effects can be caused by (sometimes complex) physical non-

linear phenomena, such as operation near the saturation region [6], intermodulation10

distortion [7], and diffusion capacitance [8]. In practice, nonlinear systems can be ac-

curately modeled with limited prior knowledge by Volterra1 series [9, 10], which are

essentially a flexible (and always stable [11]) functional series expansion of a nonlinear

time-invariant system. These series have the advantage of taking into account mem-

ory effects, in contrast to static nonlinear models [12, 13]. The generality of Volterra15

models can be shown either by interpreting them as discrete-time systems with fading

memory or by the application of the Stone-Weierstrass theorem to the approximation

of input/output finite-memory mappings [11, 14, 15]. The result published in [16] de-

serves mention, since it states the existence of a locally convergent power-series-like

expansion of a large class of systems that contain an arbitrary (although finite) number20

of nonlinear elements.

It is noteworthy that Volterra modeling is an enduring research problem due to its

wide range of applications [17]. Such models describe with conceptual simplicity the

system output as a sum of a first-order operator, a second-order operator and higher-

order operators, generalizing the convolution concept from linear time-invariant sys-25

tems [18, 19, 5]. As the memory (or delays) and orders become larger, the number

of the Volterra coefficients (each of them unequivocally associated to a kernel or basis

waveform) increases geometrically. This makes the identification task a very challeng-

ing one, especially when there is a lack of knowledge about the operating principle

and/or the structure of the device to be identified [20, 5]. In optical transmissions sys-30

tems, for example, as the transmission capacity increases, the computational burden

1Such a name derives from the work of the Italian mathematician Vito Volterra (1860-1940).
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required for standard techniques to model the communication system may be unac-

ceptable [21]. Due to these facts, it is important to identify such systems with a low

computational burden. Furthermore, robustness against the ubiquitous noise is crucial.

The global search feature of evolutionary algorithms avoids the local minima trap-35

ping phenomenon in non-convex or NP-hard optimization problems, providing an ef-

fective search procedure for different research areas [22]. Such properties enable them

to become a natural choice for the selection of proper basis Volterra sets. In general

terms, an evolutionary algorithm deals with individuals, aiming to encounter a proper

point that conveniently addresses the inherent trade-off between the exploration and40

exploitation abilities of the stochastic search [22]. Each individual is unequivocally

mapped into a candidate solution of an objective function defined for optimization pur-

poses. The value of such a function, evaluated using a properly mapped individual as

an argument, is employed as a fitness evaluation of the candidate solution.

Several families of evolutionary schemes have been advanced, such as particle45

swarm optimization [23], multiobjective decomposition-based algorithm [24], genetic

programming [25], reaction optimisation [26], indicator-based algorithms [27], firefly

algorithms [28], artificial bee or ant colony algorithms [29], differential evolution [30],

learning automata-based selection [31]. To our knowledge, none of these evolutionary

techniques was ever employed in order to address the identification of Volterra systems.50

The focus of this paper is on genetic algorithms [32], which can be regarded as a

nature inspired meta heuristics that also enforces an evolutionary strategy. Accordingly,

we propose a genetic algorithm that efficiently takes into account the idiosyncrasies of

Volterra-based identification tasks. The first attempt to use genetic algorithms (GAs)

for the identification of Volterra systems was devised in [33], which encoded the active55

kernels by binary chromosome representation. This paper (as well as the very similar

approach of [34]) assumed a multi-objective performance criterion, combining both

mean squared error (i.e., the ℓ2-norm) and the maximum error (i.e., the ℓ∞-norm of the
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error). Work [35] proposed the usage of the least squares procedure for the estimation

of the coefficients of the supposed-to-be active kernels. Reference [36] encoded the60

location of active kernels using B bits, which requires precautions against non-factible

locations. The employment of genetic algorithms was also proposed by [37], which

aims to capture the nonlinear relationships of functional link networks, consisting of

high-order perceptrons that may be equivalently rewritten as Volterra models. The

floating-point genetic algorithm presented in [38] combines the kernels selection and65

coefficients identification steps in one single evolutionary step. In [39] an adaptive

variable-length GA was proposed whose chromosomes encode the selected candidate’s

coefficients. The initialization procedure of this solution assumed to be active the basis

functions where the correlation magnitude with the output was large.

This paper proposes an efficient genetic algorithm-based solution for the identifica-70

tion of time-domain Volterra series, suited to get a representation of complex nonlinear

systems when a physically-based model is not available [5]. The memory length is

assumed to be finite and upper bounded by a known value. The proposed algorithm

takes into account the sparsity property that Volterra systems often present in prac-

tice [40, 41]. This avoids the need to estimate all kernel coefficients in each step,75

since often only a small number of them may contribute significantly to the output sig-

nal [35, 42]. Furthermore, an initialization procedure that chooses the most promising

kernels ith higher probabilities is adopted. Sparsity-aware Volterra identification meth-

ods typically require a judicious pruning in order to reduce the basis set size [43], and

the proposed method is not an exception.80

The data structures of the proposed GA-based methodology were suitably selected

to allow a customized hierarchical search of proper solutions in practical systems,

spending little computational time for such an identification task. This hierarchical

feature presents the potential to address large problems in an efficient way [44].

This paper is structured as follows. Section 2 presents the theoretical modelling85
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regarding the Volterra series. Section 3 presents our advanced GA approach towards

identifying the basis sets of time-domain Volterra series. Section 4 discusses the exper-

imental setup and respective results obtained. Section 5 presents the main conclusions

of this work.

2. Volterra Series Identification Model90

This paper focuses on the identification of single input single output nonlinear sys-

tems. In the case of continuous-time systems, one may write the output y(t) as a sum

of response components xn(t) [45]:

y(t) =
∞

∑
n=1

xn(t), (1)

where the n-th component is described by:

xn(t),
∫ ∞

−∞
. . .

∫ ∞

−∞
︸ ︷︷ ︸

n×

hn(τ1, . . . ,τn)
n

∏
i=1

u(t− τi)dτ1 . . .dτn, (2)

where hn(τ1, . . . ,τn) is the n-th order Volterra kernel (or the n-th-order impulse response

of the non-linear system [46]) and u(t) is the system input. Since the continuous-time95

modelling of (1)-(2) presents several limitations in practice [45], henceforth a discrete-

time counterpart with finite support is assumed.

The output y[k] ∈ R of a double-truncated discrete-time Volterra filter whose input

is denoted by x[k] ∈ R is modeled as:

y[k] =
M

∑
p=1

N−1

∑
n1=0

N−1

∑
n2=0

· · ·
N−1

∑
np=0

hp [n1, · · · ,np]
p

∏
l=1

x [n− nl]+ν[k], (3)

where N ∈N is the memory depth, hp[n1, · · · ,np] ∈R denotes the coefficients of the p-100

th order kernel (or polynomial basis function) and M ∈N is the maximum nonlinearity

order [47], which can be estimated with experimental or theoretical methods [48, 49].
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The Volterra model (11) is assumed to be symmetric, so that hp [n1, · · · ,np] maintains

its value irrespective of the p! possible permutations of the indices n1, · · · ,np [46, 42].

The measurement process of the output gives place to a measured output d[k] described105

as:

d[k] = y[k]+ν[k], (4)

where ν[k] ∈ R accounts for measurement noise, interferences and/or error modeling

errors. Assuming the availability of L output samples, one may model the input-output

mapping as:

Xw
⋆ ≈ d, (5)

where2 the approximation derives from the existence of the noise ν[k], X ∈ R
L×R,110

w
⋆ ∈ R

R, d ∈ R
L, and R depends on N and M through [36]:

R =
M

∑
i=1

(
N + i− 1

i

)

. (6)

More specifically, vector d can be defined as:

d,

[

d[0] d[1] . . . d[L− 1]

]T

, (7)

and the (unknown) vector w⋆ contains the R ideal coefficients one intends to estimate.

Notice that R, defined in Eq. (6), depends on M and N, and is also the number of

columns of X . In the case N = M = 2, one has R = 5 and X assumes the following115

2All vectors of this paper are of column-type.
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structure:

X =













x[0] x[−1] x2[0] x2[−1] x[−1]x[0]

x[1] x[0] x2[1] x2[0] x[0]x[1]

...
. . .

. . .
. . .

...

x[L−1] x[L−2] x2[L−1] x2[L−2] x[L−1]x[L−2]













. (8)

Please note that the i-th column of X is associated to the i-th kernel (or basis set),

so that a system whose output is written as:

y[k] = 0.5x[k− 1]− 0.3x2[k]+ 0.1x[k]x[k− 1] (9)

presents an ideal vector3
w

⋆ given as:120

w
⋆ =

[

0 0.5 −0.3 0 0.1

]T

, (10)

whose zero elements correspond to inactive kernels (i.e., x[k] and x2[k− 1]). An esti-

mate ŵ of w⋆ emulates the actual system output by performing the following evalua-

tion:

ŷ[k] = ŵ
T
x[k], (11)

where x[k] is a column-vector that contains the elements of the k-th row of matrix X .

The discrepancy between the measured output and the estimated output is incorporated

into the error signal e[k], defined as:

e[k], d[k]− ŷ[k], (12)

whose magnitude consists of a stochastic assessment of the identification procedure [50].

The vector e ∈R
L (or residue vector) collects the error samples of a specific candidate

3Note that still it is assumed here that N = P = 2.
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ŵ:

e [ŵ],

[

e[0] e[1] . . . e[L− 1]

]T

. (13)

A naive approach to estimate w
⋆ can be implemented by the least squares (LS)

method, which minimizes the ℓ2-norm of the residue vector, providing the following125

closed-form solution [51, 52]:

ŵLS =
(
X

T
X

)−1
X

T
d, (14)

where ŵLS is the LS estimate of w⋆. It is possible to regard the LS regression as a

special case of the more general method of maximum likelihood [53]. Since the num-

ber of parameters of a Volterra system is large even for models of moderate size, the

corresponding least-squares computation routines become prone to numerical errors.130

This requires that the number of measurements should be much larger than the number

of model parameters [9]. Such a fact motivates the usage of alternative approaches

(such as the one advanced in this paper) that present robustness against overfitting or

overparameterization.

In this paper, an accurate estimation of the active kernels (associated with columns

of matrix X) is the main goal. A candidate solution should indicate which columns

of X are to be included in the nonlinear identification model. The nonzero kernel

coefficients associated with such a solution may be computed through

ŵ =
(
X

T
partXpart

)−1
X

T
partd, (15)

where Xpart is obtained by removing the columns of X whose kernels are estimated as135

inactive.
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3. Proposed Approach

In this section we propose a method for the identification of time-domain Volterra

series using genetic algorithms (GA), in order to conveniently address the existence of

multiple local optima solutions. In brief, genetic algorithms operate on a population of140

individuals, where each individual is a potential solution to a problem. Frequently, GA-

based approaches ensure higher convergence rates of the search procedure, when com-

pared against conventional gradient-based techniques [54]. In this paradigm, each indi-

vidual is typically encoded as a fixed-length binary string. After defining an individual,

the next step is to generate a population (randomly or heuristically). Three genetic op-145

erators are then applied to the population, sequentially and interactively, namely: (i)

selection, (ii) crossover and (iii) mutation, which puts forth a new generation. Such op-

erators tend to improve the quality of the entire population, in a statistical sense [55].

The following sections are organized as follows: Section 3.1 describe the core concepts

behind GAs; Section 3.2 characterizes the hierarchical structure employed; and Section150

3.3 presents proposed enhancements such as a randomized constructive heuristic and a

constructive heuristic oriented by benefit.

3.1. Main Genetic Algorithm Concepts

3.1.1. Solution Encoding

A solution encoding scheme to find the best number and positions of Volterra ker-155

nels can be represented by a chromosome composed of a binary array representing

which kernel is part of the solution. The value (allele) assigned to each position (locus)

indicates whether the i-th kernel was chosen to be active in the identification proce-

dure. A locus with allele equal to 1 means that the kernel represented by this position

is part of the system. Conversely, an allele with value 0 symbolizes that the kernel was160

not selected to be part of the identification system. Figure 1 exemplifies the encoding

for the system shown in Eq. (16), using the indexing of a Volterra series when: (i) the
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memory length is N = 3 and (ii) terms up to second order are present (i.e., M = 2; see

Table 1).

Figure 1: Chromosome representation.

d[k] = w⋆
1x[k− 1]+w⋆

5x[k]x[k− 2]+w⋆
6x2[k− 1]

+w⋆
8x2[k− 2], (16)

where w⋆
i is the i-th coefficient of the ideal impulse response.165

Table 1: Example of a Volterra serie indexing.

Index Component

0 x[k]
1 x[k− 1]
2 x[k− 2]
3 x2[k]
4 x[k]x[k− 1]
5 x[k]x[k− 2]
6 x2[k− 1]
7 x[k− 1]x[k− 2]
8 x2[k− 2]

3.1.2. Fitness

Each chromosome is evaluated and assigned to a fitness value. As in other typ-

ical optimization problems, the fitness function adopted in this work is the objective

(fitness) function F , defined as:

F [ŵ], E
{

exp
[
−e2(k)

]}
, (17)
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where E[·] is the expectation operator, which in practice is estimated by the average170

procedure in a realization of the underlying stochastic process. The exponentiation

function is employed in (17) in order to avoid that outlier observations degrade sig-

nificantly the estimation procedure [56, 57]. This procedure can be motivated by the

correntropy, which is a similarity measure that generalizes the linear correlation func-

tion to nonlinear spaces [58]. Such a criterion is more suitable for nonlinear signal175

processing problems [59]. Note that the error e(k) in Equation (17) is evaluated using

(15) and (11)-(13).

3.1.3. Selection operation

The selection operator is crucial for the convergence characteristics of GA. In this

work, the selection of which individuals participate of the crossover is performed in180

accordance with population structure (see Section 3.2). Accordingly, each pair of indi-

viduals, leader and subordinate, of the population, is selected for a crossover operation.

3.1.4. Crossover operation

After the pairs of individuals have been selected, the crossover operation is per-

formed in order to generate new individuals in the population. During the reproductive185

process, a permutation of the parents genetic material is performed. Namely, a one-

point crossover is used, where the two parents are cut once at specific randomly chosen

point selected to split their chromosomes. This procedure is illustrated in Figure 2.

0 1 0 0 0 11 1 0

1 0 1 0 0 00 1 1

0 1 0 0 0 00 1 1

Parent 1

Parent 2

Offspring

Figure 2: Example of crossover operation.

Algorithm 1 shows the pseudocode for the crossover operation. (Il , Is), are the
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leader and supporter individuals, respectively; cs is the size of the chromosome and Io190

is the offspring resulting from the crossover. Procedure Random(0, 1) is a function that

provides a random number in the interval [0,1]. Please note that Algorithm 1 executes

in Θ(cs) time.

Algorithm 1 Crossover(Il, Is, cs)

1: pcut ← Random(1,cs)
2: for i← 1 to pcut do

3: Io [i]← Il [i]
4: end for

5: for i← pcut + 1 to cs do

6: Io [i]← Is [i]
7: end for

8: return Io

3.1.5. Mutation operation

The mutation operator is very significant to avoid premature convergence when195

most individuals of the population present genetic information that is very similar.

Considering a mutation rate, this operation aims to diversify the genetic material in

the new generation of individuals. When a locus is selected for mutation, the method

considers two possibilities:

• Locus without kernel: the i-th kernel is set (allele transitions from 0→ 1);200

• Locus with kernel: the i-th kernel is removed from the system (allele transitions

from 1→ 0).

The pseudocode of the mutation operation is presented in Algorithm 2. Io is the

offspring resulting from the crossover, mp is the probability of the mutation and cs is

the size of the chromosome. Similarly to the crossover pseudocode, Algorithm 2 also205

executes in Θ(cs) time.
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Algorithm 2 Mutation(Io, mp, cs)

1: Im← Io

2: for i← 1 to cs do

3: R← Random(0,1)
4: if R > mp then

5: if Io [i] == 0 then

6: Im [i]← 1
7: else

8: Im [i]← 0
9: end if

10: end if

11: end for

12: return Im

3.2. Hierarchical Population Structure

In the proposed approach we adopted a hierarchical structure, in order to reduce

the computational burden associated with calculating solutions. Previous experiences

in solving combinatorial optimization problems using genetic algorithms show that210

a hierarchically structured population leads to performance improvements over non-

structured population approaches. Accordingly, in this work, the population of indi-

viduals is organized as a ternary tree, composed of four clusters with four individuals;

each one composed of a leader and three subordinate individuals [60]. As illustrated in

Figure 3, the individuals’ hierarchy is established by their fitness, where a leader indi-215

vidual resides above (and has a better fitness than) its three subordinates individuals.

As a result, the best solution is always placed at the upper cluster (i.e., at the root node

of the tree).

2

75 6

3

108 9

4

1311 12

1

cluster 

leader 

supporters

Figure 3: Example of the individuals’ hierarchy in terms of their fitness.
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In evolutionary algorithms approaches, employing a structured population has the

benefit of using a small number of individuals when compared to typical non-structured220

populations. The computational effort is reduced, since fewer fitness evaluations are

required. Empirical studies have shown that population structure and hierarchy among

individuals overcome the requirement for a larger population that is needed to maintain

the exploration effectiveness of the genetic algorithm [60, 61]. The number of individ-

uals in the population is the number of nodes in a complete ternary tree, i.e., (3h−1)/2,225

where h is the height of the tree [61]. In this work, the population has 13 individuals,

resulting from using a ternary tree with three levels.

3.3. Initial Population

Two population initialization procedures are proposed and compared: (i) a random-

ized constructive heuristic (RCH) and (ii) a constructive heuristic oriented by benefit230

(CHOB), inspired by [38]. Both procedures begin with an empty population and gen-

erate a feasible initial population (see Section 3.4). Algorithm 3 illustrates the ideas

behind these procedures. The main difference concerns the probability of choosing a

specific kernel.

For both RCH and CHOB, each main iteration (lines 2-15) constructs one feasible235

individual. Each individual starts without active kernels (lines 3). The inner loop

(lines 5-12), attempt to position a kernel in the i-th locus with probability τi.

The RCH represents a purely random choice which sets τi = 0.5 for i∈{0,1, . . . ,cs−

1}, i.e., the probability of a kernel composing the solution or not is 50%. In order to

improve the initial solutions, the alternative CHOB was proposed, which considers the

benefit of a specific kernel for system identification. For this procedure τi = Bi, where

14



Algorithm 3 GenerateInitialPopulation()

1: P← {}
2: while (|P| ≤ popSize) do

3: I← 0

4: while (!isFeasibleIndividual(I)) do

5: for (i = 0; i < cs; i++) do

6: R← Random(0,1)
7: if R 6 τi then

8: Ii← 1
9: else

10: Ii← 0
11: end if

12: end for

13: end while

14: P← P∪{I}
15: end while

16: return P

Bi is the benefit of choosing the i-th kernel, which can be calculated by:

Bi =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

L−1

∑
l=0

(x[l, i]− x̄i)× (d[l]− d̄)
√

L−1

∑
l=0

(x[l, i]− x̄i)
2×

L−1

∑
l=0

(d[l]− d̄)2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (18)

where x[l, i] is the element of matrix X located at the (l, i) position, L is the number of

samples, x is a one-dimensional vector, and x̄i and d̄ are the average of the i-th column

of matrix X and of vector d, respectively. Bi gives a measure of the benefit achievable240

by each possible kernel allocation. Thus the probability of selecting the kernel with a

better benefit is greater than the probability of selecting a kernel with a worse benefit.

Note that Equation (18) computes the bivariate linear correlation Bi between the i-th

column of matrix X and the measured system response d, where 0 ≤ Bi ≤ 1. It is

noteworthy that the evaluation of Bi is required only once, since it does not depend on245

the current population.

The CHOB generates feasible solutions faster than the naiver approach RCH. Gen-

erally, constructive heuristics generate higher quality initial populations [62, 63].
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In Algorithm 3 popSize represents the number of individuals present in the popula-

tion and has value (3h−1)/2; I is a chromosome that represents a solution, as described250

in 3.1.1. The algorithm executes in time O(3hλcs), where λ is an upper bound on the

number of iterations that need to be performed to obtain a feasible individual.

3.4. Feasibility

In order to overcome overfitting issues, there are constraints regarding the number

of active kernels in the chromosome. Namely, an individual is considered unfeasible255

whether if it has zero active kernels or presents an excessive number of active basis sets.

Rmax +1 is a lower-bound on the number of active kernels required for an individual to

be considered unfeasible. It is important to mention that Rmax is a user-defined param-

eter. In practice, the choice of the Rmax value should be oriented by prior information

about the specific problem the identification procedure intends to solve.260

3.5. Genetic Algorithm

Algorithm 4 presents the pseudo-code for the method proposed in this work. The

procedure is based on a constructive heuristic used within a genetic algorithm, which

includes the previously mentioned selection, crossover, and mutation operators as well

as the hierarchical population structure (P). In order to introduce diversity, the main265

iteration (lines 1-19) allows more than one restart in the population of individuals. The

core of the GA is observed in the loop shown in lines 3-18, where the structure of the

population is hierarchically reorganized (this is performed through the SortTree()

method, see Section 3.2). Furthermore, each pair of individuals, incorporating a leader

and subordinate, is selected for the crossover operation, and each generate offspring270

can mutate according to a certain probability. If the generated offspring is unfeasible,

a procedure to make it feasible is performed. Also, if it has a better fitness than its

subordinate parent then the offspring occupies the parent’s position. Otherwise, the

offspring dies. The algorithm executes in O
(
GAResets(3hCsλ+ϕ(3h log3h + |P|Cs))

)
,

where ϕ represents the upper bound of generations.275
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Algorithm 4 Genetic algorithm with a structured population

1: for number of GA resets do

2: P← GenerateInitialPopulation();
3: while (numGenerations < limitGen) do

4: P← SortTree()
5: for each pair (leader,subordinate)∈ P do

6: o f f spring←Crossover(leader,subordinate)
7: R← Random(0,1)
8: if R 6 T then

9: o f f spring←Mutation(o f f spring)
10: end if

11: if Unfeasible(o f f spring) == true then

12: o f f spring←MakeFeasible(o f f spring)
13: end if

14: if Fitness(o f f spring) > Fitness(subordinate) then

15: subordinate← o f f spring

16: end if

17: end for

18: end while

19: end for

4. Experimental Results

In the forthcoming simulations, the measurement noise signal ν[k] is assumed to be

a white Gaussian signal. Its variance is chosen accordingly to the considered signal-to-

noise ratio (SNR), in dB, defined as:

SNR (dB) , 10. log10
E[y2[k]]

E[ν2[k]]
. (19)

The identification of the following three distinct nonlinear systems will be anal-

ysed:

⋆ System I (considered in [64]):

d[k] = 0.6x[k]+ 1.2x2[k− 1]+ 0.8x[k− 1]x[k−2]+ν[k] (20)
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⋆ System II (considered in [65, 66]):

d[k] = x[k− 2]+ 0.08x2[k− 2]− 0.04x3[k− 1]+ν[k] (21)

280

⋆ System III (considered in [64]):

d[k] = 0.3528x[k]+0.2393x[k−1]+0.1199x[k−2]

−0.0025x[k−3]−0.1248x[k−4]+0.3461x2 [k]

+0.2923x[k]x[k−1]+0.2312x[k]x[k−2]

+0.2434x2[k−1]+0.1886x[k−1]x[k−2]

+0.1644x[k]x[k−3]+0.0936x[k]x[k−4] (22)

+0.1291x[k−1]x[k−3]+0.0664x[k−1]x[k−4]

+0.1413x2[k−2]+0.0905x[k−2]x[k−3]

+0.0376x[k−2]x[k−4]+0.0498x2 [k−3]

+0.0078x[k−3]x[k−4]−0.0222x2 [k−4]+ν[k].

Unless stated otherwise, the proposed GA method employed a mutation rate of 0.1.

As stated before, a candidate individual to a population (a candidate solution) is con-

sidered unfeasible if the cardinality of the estimated active basis set is larger than the

adjustable parameter Rmax. Due to the fact that the nonlinear system parameters are285

not known, it is expected that the choice of Rmax guarantees a sufficient safety mar-

gin. For example, System II (see Eq. (21)) presents three active kernels. In this case,

a successful identification procedure should employ a parameter Rmax larger than 3.

Henceforth, otherwise stated on the contrary, one assumes that the chromosome max-

imum size is 55 and the constraint concerning to number maximum of kernels ranges290

from 8 to 32 being for the Systems I and II Rmax ∈ {8,9, . . . ,15} and for the System III

Rmax ∈ {25,26, . . . ,32}. The following sections evaluate the impact of several identifi-
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cation procedure parameters.

4.1. Comparison between CHOB versus RCH strategies

Tables 2 and 3 present, for Systems I and II (respectively), the total execution time295

of the GA with the Random Constructive Heuristic (RCH) in order to run the GA-

based identification procedure with the following parameters: 100 generations, N = 4,

M = 3, and L = 1000 measurements. In the case of System III, the total execution

time is 2s for all Rmax values. Note that the SNR parameter does not have a significant

impact on the average execution time. Also, it is important to say the smaller the Rmax300

value, the higher the execution average time because the constraint gets tighter. This

is due to the time required to address unfeasible candidates, which occurs frequently.

Employing the CHOB for a 100 Monte-Carlo trials, each using 100 GA generations,

always required less than one second for all configurations. Tables 2 and 3 present the

total execution time for Systems I and II, required by RCH. These results show that the305

CHOB requires less computational burden due to its ability to find feasible solutions

with less computational effort than the RCH.

Table 2: Total execution time (with 100 independent Monte Carlo trials) for the GA-based identification with
RCH strategy for System I.

Rmax SNR = 10 dB SNR = 15 dB SNR = 20 dB

15 00m17s 00m17s 00m17s
14 00m51s 00m50s 00m50s
13 02m47s 02m44s 02m30s
12 09m35s 09m45s 09m25s
11 10m08s 10m01s 10m05s
10 10m14s 11m00s 10m30s
9 12m18s 12m32s 10m05s
8 46m24s 53m59s 45m13s

Due to lack of space, we opted not to include all the results values (fitness, chro-

mosome, number of active kernels, and coefficients) obtained for each Rmax and SNR

case test. The full set of results can be obtained through the GitLab repository for this310

work [67]. In addition, in the set of results that follows, we opted to describe the best

19



Table 3: Total execution time (with 100 independent Monte Carlo trials) for the GA-based identification with
RCH strategy for System II.

Rmax SNR = 10 dB SNR = 15 dB SNR = 20 dB

15 00m22s 00m18s 00m20s
14 00m55s 00m53s 01m11s
13 02m51s 02m46s 03m21s
12 10m01s 10m00s 10m01s
11 10m06s 10m12s 10m01s
10 10m04s 10m36s 11m04s
9 11m36s 12m22s 12m41s
8 46m50s 52m34s 43m12s

system estimates in terms of different values of Rmax and SNR. We chose to employ

different values for each estimate on purpose, in order to show that a specific favourable

configuration was not adopted. In doing so, we aim to show that the model is robust to

diverse configurations.315

The best estimates of System I for both CHOB and RCH strategies for Rmax = 8

and under an SNR of 10 dB (with the remaining parameters assuming the same values

that generated Table 2) after running the proposed GA whilst varying the number of

generations between [10,20, · · · ,100] are:

y
(RCH)
I (k) = 1.2252x2[k−1]+0.7775x[k−1]x[k−2]

−0.0111x2[k−2]+0.1212x[k]x2 [k−3] (23)

+0.1978x[k]x2 [k−4]−0.0076x2 [k−1]x[k−4]

+0.0075x2[k−2]x[k−4]+0.0079x3 [k−3],

320

y
(CHOB)
I (k) = 0.5692x[k]+0.0091x2 [k]+0.0284x[k]x[k−2]

−0.0268x[k]x[k−4]+1.1831x2[k−1] (24)

+0.8092x[k−1]x[k−2]+0.0292x[k−1]x2 [k−2]

+0.0399x[k−2]x2[k−3],

20



where the proposed CHOB approach has successfully identified the three active kernels

(indicated in boldface) in contrast to the RCH that identified, in the best case, two active

kernels. It is important to draw attention to the fact that the higher the Rmax value is,

the easier it is the identification of the active kernels. This is justified by the smaller

number of possible combinatorial solutions.325

Tables 4 and 5 present a summary of the computational experiments for System I

with the number of generations ranging from 10 to 100 and the same parameters for

solutions in Equations (23) and (24). For each of these generation tests a hundred (100)

resets were performed. In addition, the best solution was recorded. These tables present

the best solution found for each number of GA generation (#gen), where vector J330

contains the indices of the active kernels present in the respective best estimate that was

recorded and vector ŵ contains the coefficients found for each corresponding index.

The last line shows the best solution (S⋆) which refers to the systems considered (Eq.

(20)). For each solution, the active kernels found that match with the ones in the best

solution are underlined, as well as their respective weights values.335

From the results presented in Tables 4 and 5, it is possible to observe that the

CHOB is more efficient than RCH, not only in terms of computational time but also in

identifying the active kernels. The RCH in some cases has identified only one kernel. In

other cases, two kernels have been identified, in contrast with CHOB, which correctly

has found the three correct active kernels for all test scenarios. The solution in boldface340

in both tables (4 and 5) represent solutions with the best fitness and they are depicted

in Equations (23) and (24). Due to the random nature of the algorithm, the times

described in Table 4 do not grow linearly with the number of generations. This is due

to the number of unfeasible solutions that are generated and the respective amount of

time that is required to address them.345

The same case study was performed for the identification of System II, using

Rmax = 10 and an SNR of 15 dB, with the same parameters of Table 3. The best
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Table 4: Best solutions found when running the GA for System I with: RCH, resets = 100, SNR (dB) = 10,
Rmax = 8.

#gen
Active kernels (J )

Coefficients (ŵ)
#gen

Active kernels (J )

Coefficients (ŵ)

10

J = [2 5 10 11 12 21 24 47]
ŵ = [0.0017 -0.0123 1.2315 0.7353

-0.0297 -0.0074 -0.0336 0.0394]
time: 53m31s fitness: 0.4184

60

J = [1 10 28 37 40 47 51 53]
ŵ = [0.0065 1.2134 0.0957 -0.0578

-0.0009 -0.0205 0.0014 -0.0276]
time: 64m08s fitness: 0.2416

20

J = [2 10 18 22 32 41 44 48]
ŵ = [0.0167 1.2055 0.0084 -0.0549

0.1912 0.1058 0.0083 0.0398]
time: 44m34s fitness: 0.2555

70

J = [5 6 10 17 27 32 33 48]
ŵ = [-0.0018 -0.0029 1.1964 -0.0329

0.0004 0.1955 0.0579 0.0348]
time: 47m48s fitness: 0.2519

30

J = [1 10 11 13 22 25 27 49]
ŵ = [-0.0061 1.1939 0.7944 0.0047

0.0089 0.2202 -0.0167 0.0517]
time: 36m21s fitness: 0.4917

80

J = [10 16 20 28 45 46 47 52]
ŵ = [1.1883 -0.0002 0.1239 0.0481

0.0137 -0.0603 -0.0323 0.0046]
time: 46m13s fitness: 0.2594

40

J = [2 10 11 15 22 41 46 52]
ŵ = [0.0427 1.1980 0.7372 0.0314

-0.0342 -0.0098 -0.0088 -0.0053]
time: 51m45s fitness: 0.4071

90

J = [10 11 14 32 34 38 47 51]
ŵ = [1.2252 0.7775 -0.0111 0.1212

0.1977 -0.0076 0.0075 0.0078]
time: 58m05s fitness: 0.5150

50

J = [0 9 10 25 31 32 41 42]
ŵ = [0.6042 0.0128 1.2125 -0.0673

-0.0171 0.0077 0.0826 -0.0059]
time: 70m08s fitness: 0.3328

100

J = [2 10 21 25 34 41 46]
ŵ = [0.0372 1.2039 0.0171 0.0589

0.2190 0.0520 -0.0748]
time: 46m24s fitness: 0.2540

S⋆
J ⋆ = [0 10 11]

ŵ
⋆ = [0.6 1.2 0.8]

estimates for both strategies can be described as:

y
(RCH)
II (k) = 1.0021x[k−2]+0.0065x[k]x[k−2]

−0.0074x[k−1]x[k−3]+0.0861x2[k−2]

−0.0015x[k−2]x[k−4]+0.0112x[k]x[k−1]x[k−4] (25)

+0.0029x[k]x2[k−2]+0.0108x[k]x[k−2]x[k−3]

−0.0395x3[k−1]−0.0055x[k−1]x2 [k−2],
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Table 5: Best solutions found when running the GA for System I with: CHOB, resets = 100, SNR (dB) = 10,
Rmax = 8.

#gen
Active kernels (J )

Coefficients (ŵ)
#gen

Active kernels (J )

Coefficients (ŵ)

10

J = [0 10 11 25 35 38 46 50]
ŵ = [0.5623 1.1855 0.8190 -0.0193

-0.0050 -0.0079 0.0117 0.0381]
time: 00m00s fitness: 0.5971

60

J = [0 5 10 11 12 25 33 45]
ŵ = [0.6371 0.0303 1.2035 0.8056

-0.0288 -0.0347 -0.0236 0.0029]
time: 00m00s fitness: 0.5945

20

J = [0 2 4 10 11 18 25 48]
ŵ = [0.6116 -0.0183 -0.0293 1.2233

0.8051 0.0668 -0.0184 0.0134]
time: 00m00s fitness: 0.5951

70

J = [0 5 7 9 10 11 39 48]
ŵ = [0.5692 0.0091 0.0284 -0.0268

1.1831 0.8092 0.0292 0.0399]
time: 00m00s fitness: 0.5972

30

J = [0 10 11 16 19 40 41 51]
ŵ = [0.5590 1.1899 0.7724 0.0172

0.0158 0.0458 -0.0059 0.0193]
time: 00m00s fitness: 0.5961

80

J = [0 3 10 11 21 43 52 53]
ŵ = [0.6185 0.0567 1.2129 0.7875

-0.0132 0.0389 0.0225 -0.0144]
time: 00m00s fitness: 0.5945

40

J = [0 6 10 11 16 32 37 54]
ŵ = [0.5896 -0.0681 1.2142 0.8417

0.0335 0.0199 -0.0008 -0.0080]
time: 00m00s fitness: 0.5962

90

J = [0 2 3 5 10 11 29 54]
ŵ = [0.6154 0.0050 -0.0409 0.0350

1.1959 0.7803 -0.0128 -0.0094]
time: 00m00s fitness: 0.5945

50

J = [0 2 10 11 13 26 40 49]
ŵ = [0.5984 -0.0363 1.2058 0.7526

-0.0350 0.0206 0.0333 0.0483]
time: 00m00s fitness: 0.5958

100

J = [0 4 10 11 20 23 52 54]
ŵ = [0.5226 -0.1020 1.1944 0.8136

0.0094 -0.0220 -0.0074 0.0292]
time: 00m00s fitness: 0.5966

S⋆
J ⋆ = [0 10 11]

ŵ
⋆ = [0.6 1.2 0.8]

y
(CHOB)
II (k) = 1.0038x[k−2]−0.0110x[k]x[k−2]

−0.0076x[k]x[k−3]+0.0824x2[k−2]

−0.0164x[k−2]x[k−3]+0.0018x2 [k]x[k−2] (26)

−0.0081x[k]x[k−2]x[k−4]−0.0368x3[k−1]

+0.0070x2[k−1]x[k−2]−0.0008x3 [k−2],

350

where the RCH strategy sometimes identify two of the three kernels. In the other cases

all active basis set were identified. The CHOB correctly identify the active basis sets

for all tests. Both strategies assign small weights to the inactive basis set.

Tables 6 and 7 present a summary of the computational experiments for System II

with number of generations ranging from 10 to 100 and the same parameters for the355
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solutions in Equations (25) and (26). These tables present the best solution found for

each number of GA generations (#gen) and with a hundred (100) resets respectively

performed. The results are shown following the same pattern as Tables 4 and 5.

Table 6: Best solutions found when running the GA for System II with: RCH, resets = 100, SNR (dB) = 15,
Rmax = 10.

#gen
Active kernels (J )

Coefficients (ŵ)
#gen

Active kernels (J )

Coefficients (ŵ)

10

J =[2 3 5 10 34 35 39 41 45 50]
ŵ = [1.0100 0.0054 0.0298 0.0126 -0.0025

-0.0404 0.0048 0.0080 -0.0085 0.0041]
time: 10m41s fitness: 0.9503

60

J =[1 2 3 7 11 14 20 25 35 53]
ŵ = -0.0085 0.9971 0.0104 0.0010 -0.0014

0.0805 0.0031 -0.0028 -0.0395 0.0025]
time: 10m28s fitness: 0.9676

20

J = [2 6 10 11 12 17 18 34 35 52]
ŵ = [1.0010 -0.0019 0.0194 0.0096 -0.0113

0.0139 0.0032 -0.0053 -0.0414 0.0063]
time: 10m03s fitness: 0.9512

70

J =[2 5 14 15 18 25 30 35 40 44]
ŵ = 0.9924 -0.0059 0.0838 0.0051 0.0017

-0.0022 0.0032 -0.0435 -0.0020 0.0081]
time: 10m34s fitness: 0.9677

30

J = [2 7 12 14 16 28 29 30 35 39]
ŵ = [1.0021 0.0065 -0.0074 0.0861 -0.0015

0.0112 0.0029 0.0108 -0.0395 -0.0056]
time: 10m07s fitness: 0.9678

80

J =[2 8 10 14 18 33 35 42 45 52]
ŵ =[0.9824 -0.0016 0.0056 0.0836 -0.0033

-0.0042 -0.0369 0.0021 0.0027 -0.0052]
time: 10m26s fitness: 0.9678

40

J = [1 2 4 14 23 29 31 39 41 54]
ŵ = [-0.1337 1.0023 -0.0061 0.0804 0.0002

-0.0023 0.0088 0.0068 -0.0006 0.0032]
time: 10m07s fitness: 0.9574

90

J = [1 2 8 13 14 19 29 40 48]
ŵ = [-0.1300 1.0043 0.0042 -0.0054 0.0793

-0.0074 0.0049 0.0060 -0.0013]
time: 10m22s fitness: 0.9580

50

J = [2 4 14 22 30 33 35 41 42 45]
ŵ = [1.0011 0.0103 0.0769 -0.0057 -0.0093

0.0026 -0.0402 -0.0021 -0.0028 -0.0006]
time: 10m34s fitness: 0.9676

100

J = [2 3 4 10 14 17 25 35 41 43]
ŵ = [1.0022 -0.0070 -0.0051 -0.0036 0.0819

0.0009 -0.0005 -0.0389 -0.0042 0.0059]
time: 10m36s fitness: 0.9674

S⋆
J ⋆ = [2 14 35]

ŵ = [1.0 0.08 -0.04]

For System II identification the best solutions are exhibited in Tables 6 and 7 and

the results show that CHOB again demands less computational effort than RCH and360

that it successfully has identified all active kernels in all case studies.

From the identification point of view, System III is more challenging, since it has

many small-magnitude coefficients. Eqs. (27)-(28) present the best estimated Volterra

system using Rmax = 25 and under an SNR of 10 dB, for RCH (Eq. (27)) and CHOB

(Eq. (28)). Note that both strategies correctly identify most active kernels. Tables365

that present more details about algorithmic performance (similar to Tables 4-5) are not

presented, since it will require a large amount of information. This is due to the higher
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Table 7: Best solutions found when running the GA for System II with CHOB, resets = 100, SNR (dB) = 15,
Rmax = 10.

#gen
Active kernels (J )

Coefficients (ŵ)
#gen

Active kernels (J )

Coefficients (ŵ)

10

J =[2 5 14 22 28 35 37 45 48 50]
ŵ = [1.0007 0.0085 0.0759 -0.0094 -0.0013

-0.0412 -0.0008 0.0019 0.0023 -0.0023]
time: 00m00s fitness: 0.9666

60

J =[2 3 14 27 33 35 36 40 44 49]
ŵ = [0.9970 -0.0026 0.0820 -0.0020 -0.0104

-0.0401 0.0056 0.0005 0.0059 -0.0102]
time: 00m00s fitness: 0.9666

20

J = [2 6 14 17 34 35 43 45 47 48]
ŵ = [1.0301 0.0120 0.0787 0.0050 0.0046

-0.0414 -0.0058 -0.0033 0.0031 -0.0108]
time: 00m00s fitness: 0.9668

70

J = [0 2 3 4 14 21 23 26 35 45]
ŵ = [-0.0011 0.9785 0.0145 -0.0124 0.0812

-0.0074 -0.0063 0.0120 -0.0401 0.0038]
time: 00m00s fitness: 0.9669

30

J = [2 7 8 14 15 22 31 35 36 45]
ŵ = [1.0038 -0.0110 -0.0076 0.0824 -0.0164

0.0018 -0.0081 -0.0368 0.0070 -0.0008]
time: 00m00s fitness: 0.9670

80

J = [2 14 15 35 36 40 41 45 46 48]
ŵ = [0.9913 0.0763 0.0137 -0.0409 -0.0081

0.0153 0.0083 0.0037 0.0053 0.0063]
time: 00m00s fitness: 0.9669

40

J = [2 7 9 14 23 32 35 36 48 52]
ŵ = [1.0042 0.0031 -0.0096 0.0753 0.0087

0.0103 -0.0393 -0.0023 -0.0007 0.0010]
time: 00m00s fitness: 0.9669

90

J = [0 2 4 5 14 16 35 36 47 51]
ŵ = [-0.0000 1.0107 0.0118 -0.0036 0.0830

0.0129 -0.0401 -0.0072 -0.0062 0.0014]
time: 00m00s fitness: 0.9666

50

J = [2 12 14 22 31 34 35 36 46 50]
ŵ = [1.0140 -0.0073 0.0771 0.0030 -0.0074

-0.0025 -0.0391 -0.0020 0.0028 -0.0065]
time: 00m00s fitness: 0.9666

100

J = [2 7 11 14 22 26 35 36 42 47]
ŵ = [0.9970 -0.0123 -0.0119 0.0772 -0.0036

0.0053 -0.0397 0.0010 -0.0095 0.0039]
time: 00m00s fitness: 0.9668

S⋆
J ⋆ = [2 14 35]

ŵ = [1.0 0.08 -0.04]

complexity of System III.

y
(RCH)
III (k) = 0.3743x[k]+0.2468x[k−1]+0.1092x[k−2]

−0.1152x[k−4]+0.3463x2[k]+0.2881x[k]x[k−1]

+0.2253x[k]x[k−2]+0.1594x[k]x[k−3]

+0.0867x[k]x[k−4]+0.2521x2[k−1]

+0.1635x[k−1]x[k−2]+0.1311x[k−1]x[k−3]

+0.0540x[k−1]x[k−4]+0.1368x2[k−2] (27)

+0.0979x[k−2]x[k−3]+0.0326x2[k−3]

+0.0139x2[k]x[k−1]+0.0072x2 [k]x[k−2]

−0.0060x2[k]x[k−4]−0.0065x[k]x[k−1]x[k−4]

−0.0186x[k]x2[k−3]+0.0106x[k−1]x2 [k−2]

−0.0278x[k−1]x2[k−3]−0.0110x[k−2]x2 [k−4]

−0.0186x2[k−3]x[k−4],
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y
(CHOB)
III (k) = 0.3918x[k]+0.2414x[k−1]+0.1461x[k−2]

+0.0265x[k−3]−0.1435x[k−4]+0.3413x2[k]

+0.3038x[k]x[k−1]+0.2509x[k]x[k−2]

+0.1759x[k]x[k−3]+0.0724x[k]x[k−4]

+0.2303x2[k−1]+0.1814x[k−1]x[k−2]

+0.1367x[k−1]x[k−3]+0.0639x[k−1]x[k−4] (28)

+0.1395x2[k−2]+0.0967x[k−2]x[k−3]

+0.0590x2[k−3]+0.0105x2 [k]x[k−4]

−0.0123x[k]x[k−2]x[k−3]−0.0200x[k]x2 [k−3]

+0.0015x2[k−1]x[k−2]−0.0029x[k−1]x2 [k−2]

+0.0137x2[k−2]x[k−4]−0.0128x[k−3]x2 [k−4].

370

Intensive tests were performed, varying the two parameters presented in Tables 2

and 3. Our data indicates, when considering the systems in study, that the CHBO

always finds good quality solutions whilst requiring less time than RCH.

Furthermore, we also analyzed the impact of using CHOB method, by comparing

it to the naive RCH strategy in the identification of the three considered systems. The375

employed configuration uses a SNR of 15 dB, L = 1000, and Rmax = 15 (for Systems I

and II) and Rmax = 32 (for System III). Fig. 4 depicts the cumulative density function

(CDF) of the distortion, evaluated through 1000 independent Monte Carlo trials. Such

a distortion is evaluated through Eq. (29).

Distortion[ŵ], ‖ŵ−w
⋆‖. (29)

The CDF of an estimator distortion indicates a more accurate estimate the faster380
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it approaches unity. Note that the proposed CHOB method outperforms the RCH in

all considered scenarios. Due to this fact, only the CHOB method will be assessed

henceforth.
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Figure 4: Cumulative density function of the distortion of the CHOB (in red) and RCH (in blue) methods.

4.2. Impact of the SNR

In this scenario, three different SNR values (in dB) are considered: 10, 15 and 20.385

For all systems, the mutation rate is 0.1, the crossover rate is 0.3, L = 1000, Rmax is

12 (for Systems I and II) and 30 (for System III). Fig. 5 presents the CDF for the

three identification problems, where one can confirm that the higher the SNR value,

the better is the system identification procedure.
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Figure 5: Cumulative density function of the distortion of the CHOB method for different SNR values (in
dB).

4.3. Impact of the Mutation Rate390

In this experiment, the mutation rate (MR) is varied in the set {0.05,0.1,0.15,0.2}.

For all considered systems, the SNR is 10 dB, the crossover rate is 0.3, L = 1000, Rmax
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Figure 6: Cumulative density function of the identification procedure distortion for different mutation rate
values.

is 14 (for System I), 15 (for System II) and 28 (for System III). Fig. 6 presents the

results. Such a figure allows one to conclude that the choice of a mutation rate of 0.1

tends to be competitive in the different scenarios. These results show that it is necessary395

to maintain diversity of the population during the generations. However, inserting a lot

of diversity can lead to poor quality solutions.

4.4. Impact of the Crossover Rate

In this experiment, the crossover rate (CR) is varied in the set {0.15,0.2,0.25,0.3}.

For all considered systems, the SNR is 15 dB, the mutation rate is 0.1, L = 1000,400

and Rmax is the same of Experiment C. Fig. 7 presents the results achieved. One

can conclude that the choice of a crossover rate of approximately 0.25 tends to be

competitive in the different scenarios. Furthermore, it should be noted that in practice

it is not possible to have an accurate prior knowledge about its optimum value.
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Figure 7: Cumulative density function of the identification procedure distortion for different crossover rate
values.
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4.5. Impact of the Rmax405

In this experiment, the Rmax parameter varies in the set {12,13,14,15}. For this ex-

periment, Systems I and II are considered. Due to its size, System III is not considered

in this scenario. The SNR is 10 dB, the mutation rate is 0.1, L = 500 and the crossover

rate is 0.3. Table 8 presents the mean squared distortion, for 1000 independent Monte

Carlo trials. Note that in average the estimation of System I presents worse results410

than that of System II. Furthermore, increasing Rmax does not necessarily imply more

accuracy in the identification process, as expected.

Table 8: Mean squared distortion for different values of Rmax for Systems I and II.

Rmax System I System II

12 0.0198 0.0049
13 0.0272 0.0095
14 0.0313 0.0035
15 0.0239 0.0053

4.6. Comparison with Alternative Approaches

This section assesses the performance of the proposed algorithm when compared

against: (i) Recursive Least Squares (RLS) with forgetting factor parameter λ [68]415

and Least Squares (LS, see Eq. (14)). Consider the identification of System II with L =

1000. The advanced genetic algorithm solution is implemented with Rmax = 15, SNR =

10 dB, a mutation rate of 0.1 and a crossover of 0.3. Table 9 shows that the LS algorithm

has unpredictable results, therefore, it will not be considered in the comparison.

Figures 8 and 9 show smoothed density distribution and boxplots of the root mean420

square error (RMSE) of the remaining five algorithms, respectively. In both images,

it can be clearly seen that both CHOB and RCH algorithms perform much better than

RLS versions with λ ∈ {0.95,0.98}. RLS with λ = 0.99, although, seems to have a

good performance. Figure 10 show the same boxplot, with only these three algorithms,

and it shows that RLS has the worst performance.425
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Table 9: Mean, standard deviation and maximum root mean square error of algorithms CHOB, RCH, RLS
(with different λ factors) and LS, for 1000 independent Monte Carlo trials.

Algorithm Mean St. Dev. Max

CHOB 1.01 0.04 1.15
RCH 1.01 0.04 1.15
RLS (λ = 99) 1.13 0.04 1.28
RLS (λ = 98) 2.11 0.26 3.03
RLS (λ = 95) 2.16 0.50 4.87
LS 19,701,725.11 587,906,028.36 18,583,390,122.44

Analysis of variance (ANOVA) has been run on these three RMSE sets. The

adopted null hypothesis states that the means of the groups are all the same, whilst

alternative hypothesis says that at least one group has a different average.

The returned F-value is 3009, leading to a p-value smaller than 2e−16. Conse-

quently, one has strong statistical evidence that at least one set has a different mean. To430

find out which one, we compute Tukey HSD. Table 10 presents the results obtained.

Adjusted p-values show clearly, on any significance level, that RLS is different from

both CHOB and RCH, while these do not have much statistical significant difference

between them. Such an equivalence between CHOB and RCH was somewhat expected

since both converge at some point, however, CHOB converges faster.435

Table 10: Tukey HSD test for the different pairs of algorithms.

Algorithms Difference p− value

RCH-CHOB 0.0002 0.9904
RLS 99-CHOB 0.1174 0.0000
RLS 99-RCH 0.1172 0.0000

5. Final Remarks

This work has focused on developing a solution approach to identify in an efficient

manner Volterra Systems. The proposed solution framework is based on genetic algo-

rithms (GA) concepts, enhanced by two distinct heuristics and a hierarchical structured

population.440
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Some features presented in this work are: (i) an efficient methodology for iden-

tification of Volterra series based on genetic algorithms; (ii) the introduction of two

constructive heuristics; (iii) the reduction of the overall computational burden by the

usage of a hierarchical evolutionary technique; (iv) robustness against noise; (v) lack

of necessity for a judicious parameters adjustment process and (vi) a repository con-445

taining several experiments, performed with three systems used in the literature, which

evaluates the impact of: (i) the GA parameters; (ii) the levels of signal-to-noise; (iii) the

number of samples; (iv) the maximum limits of active kernels; and (v) the two proposed

heuristics. The tests concerning the comparison of the two proposed heuristics showed

that the CHOB requires less time to find quality solutions than the RCH approach. Be-450

yond time, CHOB is also able to find better quality solutions. Experiments regarding

the signal-to-noise levels were fulfilled and the solution methodology was capable of

achieving good results even in a scenario with high-noise in a reasonable computational

time. Evidences are given about the impact of calibrating GA parameters as well. The

results obtained demonstrate the effectiveness of the proposed methodology in produc-455

ing high-quality solutions for the identification of Volterra systems, in an acceptable
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computational time.
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